
Le brosold

2528/102 2922/102 ENVIRONMENTAL CHEMISTRY AND APPLIED SCIENCE Oct./Nov. 2018

Time: 3 hours

THE KENYA NATIONAL EXAMINATIONS COUNCIL

DIPLOMA IN ENVIRONMENTAL SCIENCE AND TECHNOLOGY MODULE I

ENVIRONMENTAL CHEMISTRY AND APPLIED SCIENCE

3 hours

INSTRUCTIONS TO CANDIDATES

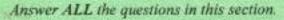
You should have the following for this examination:

answer booklet;

non-programmable scientific calculator.

This paper consists of TWO Sections; A and B.

Answer ALL the questions in Section A and any THREE questions from Section B in the answer booklet provided.


Each question in Section A carries 4 marks while each questions in Section B carries 20 marks. Maximum marks for each part of a question are as indicated.

Candidates should answer the questions in English.

This paper consists of 5 printed pages.

Candidates should check the question paper to ascertain that all the pages are printed as indicated and that no questions are missing.

SECTION A (40 marks)

- Derive the SI unit for K in the equation Q/t = KA(△T)/x where Q, t, A, △T and x represent quantity of heat, time, cross section area, change in temperature and thickness respectively. (4 marks)
- A fish weighing 25 kg swimming at 1.20 m/s suddenly swallows a 5 kg fish that was initially stationary. Neglecting any drag effect of water, determine the speed of the large fish just after swallowing the smaller one. (4 marks)
- A nylon rope used by mountaineers elongates 1.2 m under the weight of a 68.0 kg climber. If the rope is 45.0 m in length and 7.0 mm in diameter, determine its Young modulus.
 (4 marks)
- 4. An incompressible fluid of density 800 kgm⁻³ was pumped through a cylindrical pipe at a rate of 10 litres per second. If the section of the pipe has a diameter of 8.0 cm, determine the:
 - (a) flow speed; (2 marks)
 - (b) mass flow rate of the fluid. (2 marks)
- 5. (a) State Henry's law. (1 marks)
 - (b) State three causes of deviation from Henry's law. (3 marks)
- 25 cm³ dilute sulphuric acid completely neutralizes 16.1 cm³ of a solution containing 1.8 g sodium carbonate in 250 cm³ of water. Calculate the molarity of the dilute sulphuric acid. (f.wt. of sodium carbonate = 106).
- 7. (a) Name two sources of energy for the earth. (2 marks)
 - (b) Describe the big band theory of the origin of the solar system. (2 marks)
- 8. Solve the quadratic equation $x^2 x 20 = 0$ by the method of completing the squares. (4 marks)

Solve the following simultaneous equations.

$$x-y=7-3x$$

$$2y + 8x - 6 = 2x - 3y + 5$$

Solve the following equation without using a calculator or mathematical table.

(4 marks)

$$\log_5 x = \frac{\log_{10} 5 \times \log_{10} x}{\log_{10} 125 + x}$$

SECTION B (60 marks)

Answer any THREE questions from this section.

- 11. (a) Water enters a house at speed of 2.0 m/s through a pipe with a diameter of 3.0 cm at an absolute pressure of 6.0×10⁵ pascals. The water then flows through a 1.2 cm diameter pipe to a second floor bathroom 5.5 metres above the ground. Determine at the bathroom pipe the:
 - (i) flow speed;

(3 marks)

(ii) pressure;

(2 marks)

(iii) volumetric flow rate.

- (2 marks)
- (b) A conical pendulum is such that a bob of mass 1 kg is attached to a string 120 cm long and made to revolve in a horizontal circle of radius 50 cm. Determine:
 - (i) tension of the string;

(3 marks)

(ii) period of motion.

- (4 marks)
- (c) The resistance of a metal is 2.56 Ω at ice point and 2.86 Ω steam point. Determine the temperature when resistance is 2.75 Ω.
 (2 marks)
- (d) Determine the magnitude of the resultant force acting on a body as shown in Figure 1.

(4 marks)

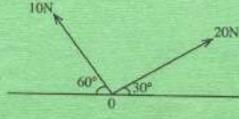


Figure 1

- 12. (a) The arrangement of two lenses in microscope are such that objective lens and eye piece lens of focal length 10 cm and 8 cm respectively, are placed 66 cm apart.

 An object 2 cm high is placed 12.0 cm to the left of objective lens. Determine, for the image viewed through the eye piece lense:
 - (i) position from both objective and eye piece lenses.

(5 marks)

(ii) size;

(4 marks)

(iii) nature.

(3 marks)

- (b) The temperature of 4.50 litres of ideal gas drops from 375 K to 275 K. If the volume remains constant and the initial pressure is atmospheric, determine:
 - (i) the final pressure;

(2 marks)

(ii) number of moles of gas.

(2 marks)

- (c) Calculate the temperature at which a tungsten filament that has an emissivity of 0.90 and a surface area of 2.5×10⁻⁵m² will radiate energy at the rate of 25 watts in a room. (2 marks)
- (d) Calculate the force on a conductor of length 75 cm carrying a current of 2 A in a magnetic field of 3 Tesla. (2 marks)
- 13. (a) Table 1 shows the molar condictivities of some ions at infinite dilution.

Table 1

ı	Ion	H ⁺	Lc+	Na ⁺	Ag*	Cl+	NOT
ı	$\Lambda_m^{\infty} SM^2 mol^{-1}$	350	39	50	62	76	7.1

- (i) Name two factors that affect molar conductivity of an ion at infinite dilution.
 (2 marks)
- If the molar conductivity of sodium ethanoate at infinite dilution is 91 Sm²mol⁻¹, calculate the molar conductivity of ethanoic acid at infinite dilution. (6 marks)
- (iii) In a conductometric titration, 10 cm³ of 0.01 M AgNO₃ solution was added in 5.0 cm³ portions to 30.000 cm³ of 0.02 M HCl solution.
 - (I) Draw a labelled sketch graph of the titration curve.

(4 marks)

(II) Explain the shape of the curve in (I).

(6 marks)

2528/102 2922/102 Oct/Nov 20/8 3 JAN 2013

(b) The variations in molar conductivity with concentration for aqueous solutions of two monobasic acids X and Y are as shown in table 2. Explain these variations. (2 marks)

Table 2

Concentration in mol/dm ³		10-10	0.5	1.0	10	100
Molar conductivity in Sm ² mol ⁻¹	For X	0.0426	0.423	0.0421	0.0412	0.0391
	For Y	0.0400	0.0068	0.0049	0.0016	0.0005

- 14. (a) (i) State the law of mass action. (2 marks)
 - (ii) State two instances when the law of mass action is not obeyed. (2 marks)
 - (b) (i) Name four factors that affect the position of equilibrium for a system in a state of dynamic equilibrium. (4 marks)
 - (ii) Name two types of chemical equilibria. (2 marks)
 - (c) In an experiment 8.10 moles of hydrogen gas is mixed with 2.94 moles of iodine at 448 °C in a three litre vessel. At equilibrium, 5.64 moles of hydrogen iodine is present in the reaction vessel. Calculate the value of the equilibrium constant. (10 marks)
- 15. (a) Determine the turning points of the curve $y = 2x^3 7x^2 + 4x + 9$, (8 marks)
 - (b) Determine the derivative of $y = 2x^3 5x^2 + 12x 7$ from the first principles. (7 marks)
 - (c) Simplify the equation:

$$\frac{2^z \times 64^z}{5^z} = \frac{16 \times 25^z}{8^z \times 4^{3r}}$$

(5 marks)

THIS IS THE LAST PRINTED PAGE.